

Hexiang Hu⁺, Yi Luan⁺, Yang Chen[‡], Urvashi Khandelwal⁺, Mandar Joshi⁺, Kenton Lee⁺, Kristina Toutanova⁺, Ming-Wei Chang⁺ *†*: Google DeepMind, *‡*: Georgia Tech (Paper ID: 3031)

Introduction

We introduce a new task called **Open-domain Visual Entity RecognitioN**, with the goal of recognizing open-domain visual entities in the wild.


Different from *traditional recognition*, **OVEN** focus on recognizing an queried visual entity from a *very large label space* defined by knowledge base (KB), such as English-Wikipedia, with 6M+ entities.

Different from *visual QA tasks*, **OVEN** focus on generalizable visual recognition, and aims to link queried image with the Web KB.

Contribution.

- Formalize and introduce the task of OVEN.
- Unify 14 image recognition, or VQA datasets, and build a general domain OVEN dataset that recognizes 6M wikipedia entities.
- Perform human annotation on the proposed task, for evaluation and upper-bound performance study.
- Evaluate different type of SoTA multimodal foundation models on our dataset, and characterize the pros and cons of those models.

What is OVEN?

Task Definition. The *input* to an OVEN model is a pair of image x^p and query text x^t, with text x^t expressing the **recognition intent** (e.g. "what is the model of aircraft?" vs. "what is the *airline company?*") that corresponding to the image x^p.

Given a knowledge base $\mathcal{K} = \{(e, p(e), t(e)) \mid e \in \mathcal{E}\}$ of triples:

- e: database identity, *i.e., Wikidata id (Q7395937)*
- t(e): textual info of an entity, *i.e., the name of entity.*
- p(e): visual info of an entity, *i.e.*, Wiki images of the entity.

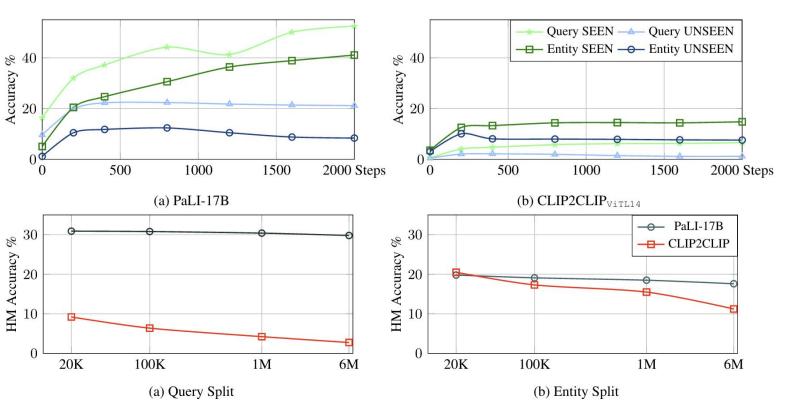
The goal of OVEN learner is to predict the patity e of a given input example $x = (x^t, x^p)$ from the KB \mathcal{K}

Remark 1. OVEN can be seen as a specialized VQA task, focus on answering "What" questions.

Remark 2. Different from VQA, the answer to OVEN is a visual entity that grounded on the knowledge base (Wikipedia), instead of free-from string, which suppose to have a concrete definition.

Remark 3. OVEN can also be viewed as a recognition task, but without any classification prior (e.g. animal, or vehicle classification). Instead, the text query input x^t specifies the domain and goal of recognition, which reduces ambiguity in open-domain recognition.

Google DeepMind **Open-domain Visual Entity Recognition: Towards Recognizing Millions of Wikipedia Entities**



		Entity $Split_{(Test)}$		Query $Split_{(Test)}$		$Overall_{(Test)}$	Human Eva	
87	# Params	SEEN	UNSEEN	SEEN	UNSEEN	HM	SEEN	UNSEEN
Dual Encoders:								
• CLIP _{ViTL14}	0.42B	5.6	4.9	1.3	2.0	2.4	4.6	6.0
CLIP Fusion _{ViTL14}	0.88B	33.6	4.8	25.8	1.4	4.1	18.0	2.9
• CLIP2CLIP _{ViTL14}	0.86B	12.6	10.5	3.8	3.2	5.3	14.0	11.1
Encoder Decoder:								
 PaLI-3B 	3B	19.1	6.0	27.4	12.0	11.8	30.5	15.8
PaLI-17B	17B	28.3	11.2	36.2	21.7	20.2	40.3	26.0
Human+Search ⁶	-	2	-	-	-	-	76.1	79.3

Observation 1. PaLI-based models are significantly better than CLIP (Performance gap on **Query Split** is bigger)

Observation 2. Scaling PaLI from 3B to 17B creates significant improvement (this scaling includes both change in language model: 1B to 13B, and change in visual model: ~2B to ~4B)

Observation 3. Human + Search Engine is significantly better than current models

Ablation 1. Over-finetuning models on OVEN leads to strong SEEN acc but weak UNSEEN acc, thus bad overall performance

Ablation 2. As the # of Wikipedia candidate space grows, the intrinsic task difficulty grows. Meanwhile, the performance of retrieval model is more affected.

In a follow-up work (dubbed InfoSeek), we propose another task that extend the scope of open-domain visual recognition to open-domain visual info-seeking question answering.

Q: What days m commonly go t A: Sunday	
Q: Who designed	ed this building?

A: Antonio Barluzzi Q: Which year was this building constructed? **A:** 1955

INFOSEEK

Resources

Dataset: https://open-vision-language.github.io/oven Contributed Baseline & Eval: <u>https://github.com/edchengg/oven_eval</u> Follow-up InfoSeek Project: <u>https://open-vision-language.github.io/infoseek</u>

20.8

31.6

77.7

We construct datasets to support Knowledge-intensive VQA, s.t. Question are visual

info-seeking (asking unknown rather than common sense) • Answers are fine-grained • It shows that SoTA multimodal foundation model still can not answer such question well