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Zero-Shot Compositional Generalization

Render an image of the [ref#1] vase that depicts the caption, adopting the
style of [ref#2] style image : a vase with flowers on top

e For the first time, we show that multi-modal instruction tuning can
make Imagen models to generalize to a large variety of generation tasks.

= = [ref#1] vase [ref#2] style image
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e \We intfroduce multi-modal instruction for image generation, which unifies
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e \We proposed a two-stage fine-tuning framework to adapt pre-trained Sk, il zellodi ihe s Hon: anadkieniifums stend next o axleeyy dof
. . . . [ref#1] actionfigure [ref#2] edge map
text2image models to accept multimodal instruction. ' tmstruct
magen

e |nstruct-Imagen performs in-domain tasks on par with SoTA, and shows
strong compositional generalization to novel generation tasks.

Generate an image of [ref#1] monster toy in the same style as the [ref#3]
style immage and following the [ref#2] mask

Unifying Generation Tasks with Multi-Modal Instruction
We cast existing image generation tasks in the format of multi-modal instruction

Text-to-Image Style Transfer Subject Generation

Render the content of [ref#1] content image in the art | | Draw a [ref#l ] fancy boot to match the content of
style of the [ref#2] style image description: a fancy boot on the stage with bunny
sticking its head out
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[ref#1] monster toy [ref#2] mask [ref#3] style image
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In-Domain Tasks Comparison

Multi-modal Instruction Prior Method Single Task Multi Task Instruct-Imagen

@enerate a image based on the caption. A 2D animation
of a folk music band composed of anthropomorphic
autumn leaves, each playing traditional bluegrass
instruments, amidst a rustic forest setting dappled with
the soft light of a harvest moon

[ref#1] content image
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ControlNet Styled Generation New Capability 'Generate an image in the shape
. o gt Draw a image in the style of [ref#1] style image, Create an image of a cup and a can following the art
Based on the [refil ]t:c:ge S; [.ref# 11 le ma&:), generate PR isnmames st ws el e 85716 of thi [refi1] styls imags, in the Alape outimned ] suggested by the [ref#2] mask,
an image according to the text: a golden trophy ks | | by the [ref#2] mask and reflect the caption: a
[ref#1] edge [ref#1] masgk [ref#1] style lmage [ref# 1] style imnage [ref#2] mask motorcycl parked on the beach.
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Draw a picture in the style of
[ref#1] style image, following the
caption. A parrot eating biscuit.
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Generate an image of the [ref#1]
berry bowl, folloing the caption
next. A dog sniffing a berry bowl.

Two-Stage Multi-Modal Instruction-Tuning

S1. Retrieval-augmented continue training, S2. Multi-modal instruction-tuning
(stage 1 adapts the pre-trained model, and stage 2 fine-tunes the model with target tasks)

‘Generate a [ref#l] toy
in the [ref#2] style: a
toy on street with city
Light in the distance'’

‘Prawn and smoked
salmon salad over
black stone'

"Begging face of
small dog with big
standing ears'
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Pre-trained Imagen - Phase 1: Retrieval-augmented Training Phase 2: Multi-modal Instruction-tuning (a) In-domain Evaluation (b) Zero-shot Evaluation



